Co-funded by the Erasmus+ Programme of the European Union

University Self-Assessment Survey Results for Russian & Tajik Universities Key Points

Erasmus+ Capacity Building in Higher Education project EXTEND "Excellence in engineering education through teacher training and new pedagogic approaches in Russia and Tajikistan" 586060-EPP-1-2017-1-RO-EPPKA2-CBHE-JP

Function

- Presents the Key Points obtained from the survey work
- Looks at both countries and 4 constituencies together
- Final synthesis identifies the perceived needed innovations

University Administration

- The development and deployment of educational technology policies is a priority in the work of top-level managers
- The exchange of knowledge, information and best practices in the application of educational technologies is low
- The selection of educational technology is often carried out by teachers in isolation
- A variety of active approaches to learning and interactive educational technologies are implemented but in a fragmented way and the drivers are weak
- The development and introduction of new technologies is regarded by middle managers as stressful

- The development of new and upgrading of existing programmes in engineering education is a dynamic space with various approaches being taken
- Remote learning opportunities are not established and still developing
- Little evaluation of educational changes is undertaken
- Good Practice examples "Teacher of the Future" (NMSTU), Centre for Electronic Educational Technologies (MGSU), Centre for the Development of Distance Education (MRSU) and others
- Most universities have approaches to teacher development but the models, their implementation and consistency are varied
- The benefits of educational change are appreciated but the complexity of implementation is not

Teachers

- Appreciate the need to consider the use of innovative ICT in their teaching practice
- Teachers offered anecdotal observations of the value to learning but no evidence of systematic evaluation
- They identify that in order to achieve good results, the path is often very stressful
- Lack confidence in terms of their capabilities to achieve the expected results
- Evidenced a variety of different teaching approaches and uses of technology demonstrating awareness

- Referred to rewards systems in place to promote educational change and the use of educational technologies
- Many teachers made reference to the lack of educational technology resources in their institutions
- Teachers believe it is necessary to have knowledge of psychology and pedagogy for effective teaching students
- Training is available but it is generally down to the individual to engage
- Tajik teachers demonstrate more 'optimism' than those from Russia

PhD Students

- Have diverse views about the quality of their graduate educational experience
- Similarly concerning the theoretical / practical mix they experience
- A familiarity with the relevant industry profession is common
- Attitudes towards the use of ICT in learning are generally positive but do vary across institutions suggesting the local culture / context has a part to play
- The engagement with distance education is varied

- Most students would like the opportunity for greater international exposure
- A course in Pedagogy is taken by the majority of students and deemed sufficient
- Teaching is expected to form a part of most careers on graduation
- Graduate students are encouraged to participate in scientific conferences etc
- Have a broad view of the competencies required to be a teacher and were often not able to appreciate how this is changing
- Tajik students were generally 'more optimistic' about educational technology than those from Russia

Bachelor and Master Students

- ICT in engineering education is valued and expected by students
- The quality experienced by students is variable and suggests that teachers still have more work to do
- 'Younger' teachers tend to be greater users and more capable
- Students find the use of ICT makes the study process easier and more accessible
- In most institutions the students are actively involved in the educational information environment of the university
- Variable access to high quality ICT for learning was a concern

- Exposure to distance education experiences is generally low
- The provision of up to date and relevant engineering education was a concern with many students not being satisfied
- The theoretical / practical mix and awareness of industry were areas where students felt improvements could be made
- Real projects and case studies help students to be closer to professional life
- Most students would like the opportunity for more international experiences
- A variety of educational technology options and learning approaches were cited by students
- Importantly in studying engineering, group work, interactive materials, practical tasks, internships, videos, games, analysis of scientific publications and analysis of specific production situations were all identified as being of value

Teacher Characteristics

Students

PhD Students

ability to explain

Teachers?

- Engaging and with a sense of humour
- Produce high quality materials to support learning
- Clear communication and explanation skills
- Passion for the subject and a desire to share with students
- Creative in approach to L+T
- Materials that are relevant and linked to industry
- Practical experience
- Users of ICT in learning
- Variety in approach to L+T
- Real projects / international flavour
- Development to build confidence and open eyes
- Rewards

- ability to prepare high-quality presentation of educational materials
- communication skills
- practical experience
- ability to support students' interest in the subject of the course
- creativity
- sense of humour

the material clearly and accessiblycommunication skills

- practical experience
- the relevance of the material being taught
- the the ability to help the graduate students to develop skills in the field of study

Co-funded by the Erasmus+ Programme of the European Union

Conclusions – needed innovations

Co-funded by the Erasmus+ Programme of the European Union

Innovation type: Pedagogical

- Development of an interactive and engaging educational environment
- Production of high quality learning materials
- Create learning experiences and materials that are clearly relevant to industry
- Appreciation of and response to the changing role of the teacher
- Training of teachers and technical staff in the application of new learning technologies and to build confidence
- Seek international opportunities for students
- Provide support within the university for teachers to conduct educational innovation
- Link 'innovation and change' to a more tangible approach to evaluation

Innovation type: Organizational

- Revise the workload of teachers in order to increase opportunities for individual communication between teacher and student
- Allow teachers time to develop new materials, approaches to learning and educational technology experiences for students
- Integrate key performance indicators for the use of new educational technologies into the monitoring system of the University and individual departments
- Increase the number of technical support staff (preparation of training materials and classrooms, maintenance of equipment, interaction with students)
- Formalise the management of educational technology uses within the quality management system

Innovation type: Social

- Develop partnerships between students and teachers during the educational process, extending this to co-creation where appropriate
- Develop a system of exchange of experiences and mentoring between staff and staff and between staff and students

Innovation type: Technological

- Modernisation of equipment, relevant software and the educational infrastructure
- Development of an educational and methodical base for the introduction of ICT into engineering education
- Diversification and sharing of sources of new information for teachers and students in the area of educational technology

Innovation type: Economic

- Develop a system of motivation, recognition and reward for teachers and technical support staff aimed at promoting the use and development of new technologies within engineering education
- Diversification of sources of financing for educational innovation

Synthesis

- Appreciation at the top that educational innovation and the use of technology in learning is important
- Students want to see more and of a higher quality
- Implementation challenges design, infrastructure, capability, confidence, time
- Teachers both established and new are in the middle
- Awareness Connections Support
- With an industrial and international flavour where possible
- Suggests the need for an engaging and inclusive infrastructure an EXTEND Centre!

